Table of Contents

A Report by **Nexant, Inc.**

Published Date: September 2018

www.nexantsubscriptions.com

Contents

1. **Executive Summary**

 1.1 **Overview**

2. **Process Overview**

 2.1 Acetylene-based VCM

 2.2 Ethylene-based VCM

 2.3 Bio-based VCM

 2.4 Ethane-based VCM

3. **Process Economics**

 3.1 VCM Capacity

 3.2 EDC Cost of Production Summary

 3.3 VCM Cost of Production Summary

4. **Commercial Analysis**

 4.1 Global Overview

5. **Introduction**

 5.1 Value Chain and Technology Overview

 5.2 Business Developments

 5.3 Technology Holders and Licensing Status

 5.4 Strategic and Business Considerations

 5.5 Physical and Thermodynamic Properties

 5.6 Specifications

 5.7 Health Hazards

 5.7.1 Safety

 5.7.2 Health Risks

 5.7.3 Environmental Risks

 5.8 Storage and Transportation

3. **Commercial Technologies**
3.1 Acetylene-Based VCM... 19
 3.1.1 Acetylene via the Calcium Carbide Process.. 21
 3.1.2 VCM via the Acetylene Process... 28
 3.1.3 Developments in Acetylene-based VCM Technology.. 30
3.2 Davy VCM Process.. 33
 3.2.1 Process Description... 34
3.3 Ethylene-based VCM.. 36
 3.3.1 Chemistry... 36
 3.3.2 Process Description... 37
3.4 INEOS Process.. 45
 3.4.1 Technology Features.. 46
 3.4.2 Process Description... 46
3.5 LG Chem Process ... 51
 3.5.1 EDC Production... 51
 3.5.2 VCM Production... 52
3.6 Oxyvinyls... 53
3.7 Tosoh... 53
3.8 Vinnolit ... 53
 3.8.1 Technology Features.. 54
 3.8.2 Process Description... 54
4 Developing Technologies .. 61
 4.1 Green Chemistry and Biotechnology.. 61
 4.1.1 Ethanol-based EDC Processes.. 61
 4.2 Ethane-based Process for VCM... 66
 4.2.1 Chemistry... 68
5 Process Economics ... 74
 5.1 Cost Basis... 74
 5.1.1 Investment Basis... 74
 5.1.2 Pricing Basis... 74
 5.1.3 Cost of Production Basis .. 76
 5.1.4 Capacity... 76
 5.2 Cost of Producing VCM via Acetylene Process ... 78
 5.3 Cost of Producing VCM via Davy VCM Process .. 78
 5.4 Cost of Producing EDC via INEOS Direct Chlorination Process ... 82
 5.5 Cost of Producing EDC via Vinnolit CNC Process .. 82
 5.6 Cost of Producing EDC via Vinnolit Oxychlorination Process ... 86
 5.7 Cost of Producing EDC via Generic Direct Chlorination Process ... 86
 5.8 Cost of Producing VCM via INEOS Balanced Oxychlorination Process .. 86
 5.9 Cost of Producing VCM via Vinnolit Balanced VCV Process ... 90
Contents

5. Technology & Costs

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10</td>
<td>Cost of Producing VCM via Generic Balanced VCM Process</td>
<td>90</td>
</tr>
<tr>
<td>5.11</td>
<td>Cost of Producing “Green” VCM/PVC</td>
<td>93</td>
</tr>
<tr>
<td>5.12</td>
<td>Regional Cost of Production Estimates for EDC and VCM</td>
<td>96</td>
</tr>
<tr>
<td>5.12.1</td>
<td>Middle East</td>
<td>96</td>
</tr>
<tr>
<td>5.12.2</td>
<td>USGC</td>
<td>96</td>
</tr>
<tr>
<td>5.12.3</td>
<td>Western Europe</td>
<td>96</td>
</tr>
<tr>
<td>5.13</td>
<td>Speculative Cost of Producing VCM from Ethane</td>
<td>115</td>
</tr>
<tr>
<td>5.14</td>
<td>Comparison of Commercial EDC and VCM Processes</td>
<td>115</td>
</tr>
<tr>
<td>5.15</td>
<td>Sensitivity Analyses</td>
<td>119</td>
</tr>
<tr>
<td>5.15.1</td>
<td>Feedstock Price</td>
<td>119</td>
</tr>
<tr>
<td>5.15.2</td>
<td>Economies of Scale</td>
<td>120</td>
</tr>
<tr>
<td>5.15.3</td>
<td>Capital Investment Costs</td>
<td>122</td>
</tr>
</tbody>
</table>

6. Commercial Applications | 123

7. Regional Market Analysis | 124

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Global Overview</td>
<td>124</td>
</tr>
<tr>
<td>7.2</td>
<td>North America</td>
<td>127</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Demand</td>
<td>127</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Supply</td>
<td>128</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Supply, Demand, and Trade</td>
<td>131</td>
</tr>
<tr>
<td>7.3</td>
<td>Western Europe</td>
<td>132</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Demand</td>
<td>132</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Supply</td>
<td>133</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Supply, Demand, and Trade</td>
<td>136</td>
</tr>
<tr>
<td>7.4</td>
<td>Asia Pacific</td>
<td>137</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Demand</td>
<td>137</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Supply</td>
<td>141</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Supply, Demand, and Trade</td>
<td>150</td>
</tr>
<tr>
<td>7.5</td>
<td>Rest of World</td>
<td>152</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Definitions of Capital Cost Terms Used in Process Economics</td>
<td>157</td>
</tr>
<tr>
<td>B</td>
<td>Definitions of Operating Cost Terms Used in Process Economics</td>
<td>161</td>
</tr>
<tr>
<td>C</td>
<td>TECH Program Title Index (2008-2018)</td>
<td>164</td>
</tr>
</tbody>
</table>
Figures

Figure 1 Global Vinyl Chloride Monomer Capacity by Feedstock ... 1
Figure 2 Average VCM Plant Capacity in China by Process .. 6
Figure 3 EDC Cost of Production for INEOS, Vinnolit, and Generic Process Technology 6
Figure 4 VCM Cost of Production via Petroleum Derived Ethylene, Bio-sourced Ethylene and Acetylene Based Process ... 7
Figure 5 Global EDC Demand by Region, 2017 ... 8
Figure 6 Global VCM Demand by Region, 2017 ... 9
Figure 7 Vinyl Chloride Monomer Value Chain ... 11
Figure 8 Global Vinyl Chloride Monomer Capacity by Feedstock 12
Figure 9 Average VCM Plant Capacity by Country - 2018 ... 20
Figure 10 Number of Vinyl Chloride Monomer Plants by Country - 2018 21
Figure 11 Calcium Carbide Acetylene Process ... 23
Figure 12 VCM via Acetylene Process .. 29
Figure 13 VCM via Davy VCM Process ... 35
Figure 14 VCM via C2H4/Cl2 Chlorination/Oxychlorination Process 38
Figure 15 INEOS Balance VCM Process ... 47
Figure 16 Vinnolit Balanced VCM Process ... 55
Figure 17 Vinnolit VCM Process Direct Chlorination: CNC Boiling Reactor Process 57
Figure 18 Block Flow Diagram for the Production of Bioethanol from Cane Juice or Molasses 61
Figure 19 Bio-Ethanol to Green Ethylene: Conceptual Process Flow 64
Figure 20 Ethylene from Ethanol (Chematur Route) .. 65
Figure 21 Comparison of Ethylene and Ethane based VCM Processes 67
Figure 22 Reactions in EVC Oxychlorination and Hydrogenation Reactors 68
Figure 23 EVC’s Novel Concept of Catalytic Oxychlorination of Ethane to VCM 69
Figure 24 EVC Ethane to VCM Process: Ethane Chlorination Section 70
Figure 25 EVC Ethane to VCM Process: Chlorination, Purification and Hydrogenation Section ... 71
Figure 26 Evolution of Average Chinese Vinyl Chloride Monomer Plant Capacity by Production Process ... 77
Figure 27 EDC Production Costs for INEOS, Vinnolit and Generic Process Technology 115
Figure 28 Cost of Production for EDC in USGC ... 117
Figure 29 Regional Cost of Production Comparison for VCM ... 118
Figure 30 VCM Production Costs via Petroleum Derived Ethylene, Bio-sourced Ethylene and Acetylene Based Processes ... 118
Figure 31 Sensitivity of EDC Costs of Production to Ethylene Pricing 119
Figure 32 Sensitivity of VCM Costs of Production to Acetylene Pricing 120
Figure 33 Sensitivity of VCM Costs of Production to Ethylene Pricing 120
Figure 34 Sensitivity of EDC Cost of Production + 10 Percent ROCE to Plant Scale 121
Figure 35 Sensitivity of VCM Cost of Production + 10 Percent ROCE to Plant Scale 121
Figure 36 Sensitivity of EDC Cost of Production + 10 Percent ROCE to Capital Investment 122
Figure 37 Global EDC Demand by Region, 2017 ... 124
Figure 38 Global VCM Demand by Region, 2017 ... 126
Figure 39 EDC Demand by End Use in North America, 2017 .. 127
Figure 40 VCM Consumption in North America by Region, 2017 .. 128
Figure 41 Western Europe EDC Demand by End Use - 2017 .. 132
Figure 42 Western Europe VCM Consumption by End Use - 2017 133
Figure 43 Asia Pacific EDC Consumption by Country - 2017 ... 140
Figure 44 Asia Pacific VCM Consumption by Country - 2017 ... 141
Tables

Table 1 Average Capacity of VCM Plants by Location .. 5
Table 2 Number of Operating VCM Plants by Location .. 5
Table 3 Global EDC Supply, Demand, and Trade ... 8
Table 4 Global VCM Supply, Demand, and Trade ... 9
Table 5 VCM Licensors and Technology Holders ... 13
Table 6 Key Physical and Thermodynamic Properties of EDC and VCM 14
Table 7 Commercial Specifications for EDC .. 14
Table 8 Commercial Specifications for VCM ... 15
Table 9 Analysis of Illinois No. 6 Coal, as Received .. 22
Table 10 Lime Feed Composition, Dry Basis .. 22
Table 11 Lime Feed Composition to Carbide Furnace, Dry Basis 24
Table 12 Coke Composition, Dry Basis .. 25
Table 13 Purified Coke Oven Gas, Dry Basis .. 25
Table 14 Carbide Furnace Offgas, Dry Basis ... 26
Table 15 Impurities in Carbide Acetylene ... 27
Table 16 Activity Comparison of Various Catalysts in LG Chem’s EDC Process 52
Table 17 Raw Materials, Products, Utilities, and Labor Costs ... 75
Table 18 Average Capacity of VCM Plants by Country/Region ... 76
Table 19 Number of VCM Plants by Country/Region .. 77
Table 20 Cost of Production Estimate for: Acetylene Process: Hydrolysis of Calcium Carbide, China .. 79
Table 21 Cost of Production Estimate for: Vinyl Chloride Monomer Process: Acetylene based VCM Process, China .. 80
Table 22 Cost of Production Estimate for: Vinyl Chloride Monomer Process: DAVY VCM Process, China .. 81
Table 23 Cost of Production Estimate for: Ethylene Dichloride Process: INEOS Direct Chlorination, China .. 83
Table 24 Cost of Production Estimate for: Ethylene Dichloride Process: Vinnolit Compact Natural Circulation Reactor for Direct Chlorination, China .. 84
Table 25 Cost of Production Estimate for: Ethylene Dichloride Process: Vinnolit EDC (Integrated with VCM Operation), China .. 85
Table 26 Cost of Production Estimate for: Ethylene Dichloride Process: Direct Chlorination, China .. 87
Table 27 Cost of Production Estimate for: Ethylene Dichloride Process: Vinnolit Oxychlorination, China .. 88
Table 28 Cost of Production Estimate for: Vinyl Chloride Monomer Process: INEOS Balanced VCM Process, China .. 89
Table 29 Cost of Production Estimate for: Vinyl Chloride Monomer Process: Vinnolit Balanced VCM Process, China .. 91
Table 30 Cost of Production Estimate for: Vinyl Chloride Monomer
Process: Conventional Balanced VCM Process, China ... 92
Table 31 Cost of Production Estimate for Bioethylene
Process: Ethanol Dehydration (Fixed-Bed), China .. 94
Table 32 Cost of Production Estimate for Vinyl Chloride Monomer
Process: Generic Balanced VCM Process from Bioethanol-based Ethylene, China 95
Table 33 Cost of Production Estimate for Ethylene Dichloride
Process: INEOS High Temperature Chlorination, Middle East 97
Table 34 Cost of Production Estimate for Ethylene Dichloride
Process: Vinnolit Compact Natural Circulation Reactor for Direct Chlorination, Middle East ... 98
Table 35 Cost of Production Estimate for Ethylene Dichloride
Process: Direct Chlorination, Middle East ... 99
Table 36 Cost of Production Estimate for Vinyl Chloride Monomer
Process: INEOS Balanced VCM Process, Middle East .. 100
Table 37 Cost of Production Estimate for Vinyl Chloride Monomer
Process: Vinnolit Balanced VCM Process, Middle East ... 101
Table 38 Cost of Production Estimate for Vinyl Chloride Monomer
Process: Conventional Balanced VCM Process, Middle East 102
Table 39 Cost of Production Estimate for Ethylene Dichloride
Process: INEOS High Temperature Chlorination, USGC ... 103
Table 40 Cost of Production Estimate for Ethylene Dichloride
Process: Vinnolit Compact Natural Circulation Reactor for Direct Chlorination, USGC 104
Table 41 Cost of Production Estimate for Ethylene Dichloride
Process: Direct Chlorination, USGC .. 105
Table 42 Cost of Production Estimate for Vinyl Chloride Monomer
Process: INEOS Balanced VCM Process, USGC .. 106
Table 43 Cost of Production Estimate for Vinyl Chloride Monomer
Process: Vinnolit Balanced VCM Process, USGC .. 107
Table 44 Cost of Production Estimate for Vinyl Chloride Monomer
Process: Conventional Balanced VCM Process, USGC ... 108
Table 45 Cost of Production Estimate for Ethylene Dichloride
Process: INEOS High Temperature Chlorination, Western Europe 109
Table 46 Cost of Production Estimate for Ethylene Dichloride
Process: Vinnolit Compact Natural Circulation Reactor for Direct Chlorination, Western Europe ... 110
Table 47 Cost of Production Estimate for Ethylene Dichloride
Process: Direct Chlorination, Western Europe .. 111
Table 48 Cost of Production Estimate for Vinyl Chloride Monomer
Process: INEOS Balanced VCM Process, Western Europe 112
Table 49 Cost of Production Estimate for Vinyl Chloride Monomer
Process: Vinnolit Balanced VCM Process, Western Europe 113
Table 50 Cost of Production Estimate for Vinyl Chloride Monomer
Process: Conventional Balanced VCM Process, Western Europe 114
Table 51	Cost of Production Estimate for Vinyl Chloride Monomer Process: EVC VCM Process, USGC	116
Table 52	Global EDC Supply, Demand, and Trade	125
Table 53	Global VCM Supply, Demand, and Trade	126
Table 54	EDC Capacity in North America - 2017	130
Table 55	VCM Capacity in North America - 2017	131
Table 56	North America EDC Supply, Demand, and Trade	131
Table 57	North America VCM Supply, Demand, and Trade	132
Table 58	EDC Capacity in Western Europe - 2017	134
Table 59	VCM Capacity in Western Europe - 2017	135
Table 60	Western Europe EDC Supply, Demand, and Trade	136
Table 61	Western European VCM Supply, Demand, and Trade	137
Table 62	Asia Pacific EDC Capacity - 2017	143
Table 63	Asia Pacific VCM Capacity - 2017	146
Table 64	Asia Pacific EDC Supply, Demand, and Trade	150
Table 65	Asia Pacific VCM Supply, Demand, and Trade	152
Table 66	Rest of World EDC Capacity - 2017	153
Table 67	Rest of World VCM Capacity - 2017	155
The Nexant Subscriptions’ Technoeconomics - Energy & Chemicals (TECH) program is recognized globally as the industry standard source for information relevant to the chemical process and refining industries. Technoeconomics - Energy & Chemicals (TECH) reports are available as a subscription program or on a single report basis.

Contact Details:

Americas:
Marcos Nogueira Cesar, Vice President, Global Products, E&CA: Nexant Subscriptions
Phone: + 1-914-609-0324, e-mail: mcesar@nexant.com

Erica Hill, Client Services Coordinator, E&CA-Products
Phone: + 1-914-609-0386, e-mail: ehill@nexant.com

EMEA:
Anna Ibbotson, Director, Nexant Subscriptions
Phone: +44-207-950-1528, aibbotson@nexant.com

Asia:
Chommanad Thammanayakatip, Managing Consultant, Energy & Chemicals Advisory
Phone: +66-2793-4606, email: chommanad@nexant.com

Nexant, Inc. (www.nexant.com) is a leading management consultancy to the global energy, chemical, and related industries. For over 38 years, Nexant has helped clients increase business value through assistance in all aspects of business strategy, including business intelligence, project feasibility and implementation, operational improvement, portfolio planning, and growth through M&A activities. Nexant has its main offices in San Francisco (California), White Plains (New York), and London (UK), and satellite offices worldwide.

Copyright © by Nexant Inc. 2018. All Rights Reserved.