# TECHNOLOGY & COSTS

## Technoeconomics - Energy & Chemicals (TECH)

### TECH 2019-5 Polycarbonate

Table of Contents

A Report by **Nexant, Inc.**

Published Date: December 2019

[www.nexantsubscriptions.com](http://www.nexantsubscriptions.com)

## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Technology Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Process Economics</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Market Overview</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Value Chain</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Technology Overview</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Licensors and Technology Holders</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Business and Strategic Analysis Review</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Key Physical and Thermodynamic Properties</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Regulatory Requirements and Pending Issues</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Recycling</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Interfacial Technology</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemistry</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Process Description</td>
<td>24</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Overview</td>
<td>24</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Phosgene Production</td>
<td>31</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Polycarbonate Polymerization</td>
<td>33</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Polymer Washing and Solvent Recovery</td>
<td>34</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Polymer Recovery and Drying</td>
<td>37</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Finishing Area (Dry End)</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Non-Phosgene Melt Technology</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Overview</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Melt Transesterification Chemistry</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>SABIC</td>
<td>43</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Chemistry</td>
<td>44</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Process Description</td>
<td>46</td>
</tr>
</tbody>
</table>
4.3.3 Process Improvement – Spray Polymerization ........................................... 58
4.4 Asahi Kasei ..................................................................................... 60
  4.4.1 Via Carbon Dioxide and Ethylene Oxide (Commercial Process) .................. 60
  4.4.2 Via Carbon Dioxide and Alcohol (Developing Process) ............................... 69
4.5 Technologies for Portions of the Non-Phosgene Melt Process ......................... 72
  4.5.1 Idemitsu Kosan .......................................................................... 72
  4.5.2 Teijin Chemical ......................................................................... 73
  4.5.3 EPC Engineering and Technologies .............................................. 74
  4.5.4 Shell, Production of DPC ................................................................ 79
5 Phosgene Melt Technology .......................................................................... 84
  5.1 Overview ..................................................................................... 84
  5.2 Covestro (formerly Bayer MaterialScience) ........................................... 84
    5.2.1 Chemistry ............................................................................... 84
    5.2.2 Process Description .................................................................. 86
  5.3 Mitsubishi Chemical Corporation ..................................................... 89
    5.3.1 Chemistry ............................................................................... 89
    5.3.2 Process Description .................................................................. 90
6 Isosorbide Melt Technology ........................................................................ 96
  6.1 Overview ..................................................................................... 96
  6.2 Chemistry ................................................................................... 97
    6.2.1 Isosorbide .............................................................................. 97
    6.2.2 Isosorbide-Based Polycarbonate ................................................. 98
  6.3 Process Description ....................................................................... 101
    6.3.1 Isosorbide .............................................................................. 101
    6.3.2 Isosorbide-Based Polycarbonate ................................................. 103
7 Process Economics .................................................................................. 105
  7.1 Costing Basis ............................................................................... 105
    7.1.1 Investment Basis ..................................................................... 105
    7.1.2 Pricing Basis .......................................................................... 107
    7.1.3 Cost of Production Basis ............................................................ 109
  7.2 Cost of Production Analysis ............................................................... 110
    7.2.1 Interfacial Process .................................................................... 110
    7.2.2 Non-Phosgene Melt Process (DMC Production via Oxidative
      Carbyonylation of Methanol, Carbon Monoxide, and Oxygen) ................ 116
    7.2.3 Non-Phosgene Melt Process (DMC Production via Methanolysis of
      Ethylene Carbonate) .................................................................... 122
    7.2.4 Phosgene Melt Process ................................................................ 128
    7.2.5 Isosorbide Melt Process ............................................................ 134
    7.2.6 Cost of Production Comparison .................................................. 140
8 Commercial Applications .......................................................................... 141
9 Regional Market Analysis ......................................................................... 145
  9.1 Global .......................................................................................... 145
9.1.1 Demand ..................................................................................................................... 145
9.1.2 Supply ..................................................................................................................... 146
9.1.3 Supply/Demand Balance ......................................................................................... 146
9.2 North America ........................................................................................................... 148
  9.2.1 Demand ................................................................................................................. 148
  9.2.2 Supply .................................................................................................................... 148
  9.2.3 Supply/Demand Balance ....................................................................................... 149
9.3 Western Europe .......................................................................................................... 151
  9.3.1 Demand ................................................................................................................. 151
  9.3.2 Supply .................................................................................................................... 152
  9.3.3 Supply/Demand Balance ....................................................................................... 153
9.4 Asia Pacific ................................................................................................................ 154
  9.4.1 Demand ................................................................................................................. 154
  9.4.2 Supply .................................................................................................................... 155
  9.4.3 Supply/Demand Balance ....................................................................................... 157

Appendices
A  Cost of Production of Selected Feedstocks ................................................................. 159
B  Definitions of Capital Cost Terms Used in Process Economics ............................... 203
C  Definitions of Operating Cost Terms Used in Process Economics .......................... 208
D  TECH Program Title Index (2009-2019) ................................................................. 211
E  References .................................................................................................................... 214
Figures

Figure 1  Polycarbonate Value Chain ................................................................. 1
Figure 2  Simplified Block Flow Diagram for Interfacial Process .......................... 2
Figure 3  Simplified Block Flow Diagram for Non-Phosgene Melt Process ............ 2
Figure 4  Simplified Block Flow Diagram for Phosgene Melt Process .................. 3
Figure 5  Simplified Block Flow Diagram for Isosorbide Melt Process .................. 3
Figure 6  Global Polycarbonate Capacity by Process ............................................ 4
Figure 7  Comparison of Cost of Production Estimates for Polycarbonate ............. 5
Figure 8  Global Polycarbonate Demand by Application, 2018 ............................ 5
Figure 9  Global Polycarbonate Demand by Region, 2018 ................................. 6
Figure 10 Global Polycarbonate Capacity by Region, 2018 ................................ 6
Figure 11 Global Polycarbonate Supply, Demand, and Trade Balance .................. 7
Figure 12 Polycarbonate Value Chain ................................................................. 8
Figure 13 Simplified Block Flow Diagram for Interfacial Process .......................... 9
Figure 14 Simplified Block Flow Diagram for Non-Phosgene Melt Process .......... 9
Figure 15 Simplified Block Flow Diagram for Phosgene Melt Process .................. 10
Figure 16 Global Polycarbonate Capacity by Process ........................................... 11
Figure 17 Global Polycarbonate Capacity Share by Marketer, 2018 ...................... 13
Figure 18 SABIC Interfacial Process .................................................................. 26
Figure 19 Trinseo Interfacial Process ................................................................. 27
Figure 20 Covestro Interfacial Process ............................................................... 28
Figure 21 Idemitsu Interfacial Process ................................................................ 29
Figure 22 Polycarbonate Interfacial Process, Reaction Section ........................... 32
Figure 23 Polycarbonate Interfacial Process, Separation Section .......................... 35
Figure 24 Polycarbonate Interfacial Process, Polymer Recovery Section ............. 38
Figure 25 Polycarbonate Interfacial Process, Finishing Section ............................ 41
Figure 26 SABIC Non-Phosgene Melt Polycarbonate Process ............................ 47
Figure 27 SABIC Dimethyl Carbonate Process, Reaction and Separation Sections .... 49
Figure 28 SABIC Dimethyl Carbonate Process, Purification Section ..................... 51
Figure 29 SABIC Diphenyl Carbonate Process .................................................... 53
Figure 30 SABIC Polycarbonate Melt Process, Polymerization Section ............... 55
Figure 31 SABIC Polycarbonate Melt Process, Finishing Section .......................... 57
Figure 32 SABIC Spray Polymerization Process .................................................. 59
Figure 33 Asahi Kasei Non-Phosgene Polycarbonate Commercial Process .......... 60
Figure 34 Asahi Kasei Dimethyl Carbonate Process ............................................ 63
Figure 35 Asahi Kasei Diphenyl Carbonate Process ............................................. 66
Figure 36 Asahi Kasei Polycarbonate Melt Process, Polymerization Section .......... 68
Figure 37 Asahi Kasei Non-Phosgene Melt Processes, Commercial and Demonstration .... 70
Figure 38 Asahi Kasei Demonstration Non-Phosgene Melt Process, DRC Production .... 71
Figure 39 EPC Non-Phosgene Melt Polycarbonate Process Schematic .................. 75
Figure 40 EPC Non-Phosgene Melt Polycarbonate Process Overview ................. 76
Figure 41 Shell DPC Process, Propylene Carbonate Production ........................... 80
Figure 42    Shell DPC Process, DMC Production ................................................................. 82
Figure 43    Covestro Phosgene Melt Process Overview ...................................................... 85
Figure 44    Covestro Phosgene Melt Process, DPC Production ........................................... 87
Figure 45    Mitsubishi Diphenyl Carbonate Process ........................................................... 91
Figure 46    Mitsubishi Chlorine Recovery Process ............................................................. 93
Figure 47    Mitsubishi Polycarbonate Melt Process ............................................................ 95
Figure 48    Isosorbide Formation Block Flow Diagram ......................................................... 101
Figure 49    Isosorbide-Based Polycarbonate Production ..................................................... 104
Figure 50    Steel Producer Price Indexes ............................................................................. 106
Figure 51    Cost of Production Summary for Interfacial Polycarbonate Processes ............... 111
Figure 52    Cost of Production Summary for Non-Phosgene Melt Polycarbonate Processes  (DMC via Oxidative Carbonylation) .............................................................................. 117
Figure 53    Cost of Production Summary for Non-Phosgene Melt Polycarbonate Processes  (DMC Production via Methanolysis of Ethylene Carbonate) ............................................. 123
Figure 54    Cost of Production Summary for Phosgene Melt Polycarbonate Processes .......... 129
Figure 55    Cost of Production Summary for Isosorbide Melt Polycarbonate Processes ....... 135
Figure 56    Cost of Production Summary for Polycarbonate Processes ............................... 140
Figure 60    Overview of Extension of Physical Properties .................................................... 141
Figure 61    Overview of Unique Applications in Polycarbonate Value Chain ....................... 143
Figure 62    Global Polycarbonate Demand by Application, 2018 ......................................... 143
Figure 63    Global Polycarbonate Demand by Region, 2018 ............................................... 145
Figure 64    Global Polycarbonate Capacity by Region, 2018 ............................................... 146
Figure 65    Global Polycarbonate Supply, Demand, and Trade Balance ............................... 147
Figure 66    North America Polycarbonate Demand by Application, 2018 ......................... 148
Figure 67    North America Supply, Demand, and Trade Balance ....................................... 150
Figure 68    Western Europe Polycarbonate Demand by Application, 2018 ......................... 151
Figure 69    Western Europe Supply, Demand, and Trade Balance ...................................... 153
Figure 70    Asia Pacific Polycarbonate Demand by Application, 2018 ................................. 154
Figure 71    Asia Pacific Polycarbonate Demand by Country, 2018 ....................................... 155
Figure 72    Asia Pacific Supply, Demand, and Trade Balance ............................................. 157
Tables

Table 1  Polycarbonate Licensors and Technology Holders .......................................................... 12
Table 2  Polycarbonate SWOT Analysis ....................................................................................... 14
Table 3  Specifications for Polycarbonate Grades ...................................................................... 16
Table 4  Polycarbonate Trade Names ......................................................................................... 17
Table 5  Regional Overview of BPA Regulatory Developments .................................................. 18
Table 6  Characteristics of Chemical Recycling Technologies for Polycarbonate ....................... 20
Table 7  Reactor Feed Basis ........................................................................................................ 33
Table 8  EPC Commercial Scale Reference Project .................................................................... 74
Table 9  EPC Product Specifications ............................................................................................ 78
Table 10  Prices of Raw Materials, Byproducts, Utilities, and Wages ......................................... 108
Table 11  Cost of Production Summary for Interfacial Polycarbonate Processes ......................... 110
Table 12  Cost of Production Estimate for Polycarbonate Process: Interfacial, USGC Basis ........ 112
Table 13  Cost of Production Estimate for Polycarbonate Process: Interfacial, Western Europe Basis 113
Table 14  Cost of Production Estimate for Polycarbonate Process: Interfacial, China Basis ........ 114
Table 15  Cost of Production Estimate for Polycarbonate Process: Interfacial, South Korea Basis 115
Table 16  Cost of Production Summary for Non-Phosgene Melt Polycarbonate Processes (DMC via Oxidative Carbylonylation) ................................................................. 116
Table 17  Cost of Production Estimate for Polycarbonate Process: Non-Phosgene Melt (DMC via Oxidative Carbylonylation), USGC Basis ................................. 118
Table 18  Cost of Production Estimate for Polycarbonate Process: Non-Phosgene Melt (DMC via Oxidative Carbylonylation), Western Europe Basis .......................... 119
Table 19  Cost of Production Estimate for Polycarbonate Process: Non-Phosgene Melt (DMC via Oxidative Carbylonylation), China Basis ........................................ 120
Table 20  Cost of Production Estimate for Polycarbonate Process: Non-Phosgene Melt (DMC via Oxidative Carbylonylation), South Korea Basis ...................................... 121
Table 21  Cost of Production Summary for Non-Phosgene Melt Polycarbonate Processes (DMC Production via Methanolysis of Ethylene Carbonate) ........................................ 122
Table 22  Cost of Production Estimate for Polycarbonate Process: Non-Phosgene Melt (DMC Production via Methanolysis of Ethylene Carbonate), USGC Basis .............. 124
Table 23  Cost of Production Estimate for Polycarbonate Process: Non-Phosgene Melt (DMC Production via Methanolysis of Ethylene Carbonate), Western Europe Basis .. 125
Table 24  Cost of Production Estimate for Polycarbonate Process: Non-Phosgene Melt (DMC Production via Methanolysis of Ethylene Carbonate), China Basis ..................... 126
Table 25  Cost of Production Estimate for Polycarbonate Process: Non-Phosgene Melt (DMC Production via Methanolysis of Ethylene Carbonate), South Korea Basis ............. 127
Table 49 Cost of Production Estimate for Polycarbonate Process: Phosgene Melt, USGC Basis ................................................................. 130
Table 50 Cost of Production Estimate for Polycarbonate Process: Phosgene Melt, Western Europe Basis ......................................................... 131
Table 51 Cost of Production Estimate for Polycarbonate Process: Phosgene Melt, China Basis ................................................................. 132
Table 52 Cost of Production Estimate for Polycarbonate Process: Phosgene Melt, South Korea Basis ............................................................ 133
Table 53 Cost of Production Summary for Isosorbide Melt Polycarbonate Processes ................................................................. 135
Table 54 Cost of Production Estimate for Polycarbonate Process: Isosorbide Melt, USGC Basis ................................................................. 136
Table 55 Cost of Production Estimate for Polycarbonate Process: Isosorbide Melt, Western Europe Basis ......................................................... 137
Table 56 Cost of Production Estimate for Polycarbonate Process: Isosorbide Melt, China Basis ................................................................. 138
Table 57 Cost of Production Estimate for Polycarbonate Process: Isosorbide Melt, South Korea Basis ............................................................ 139
Table 58 Global Polycarbonate Supply, Demand, and Trade Balance .......................................................................................................... 146
Table 59 North America Polycarbonate Capacity, 2018 ............................................................................................................................... 149
Table 60 North America Supply, Demand, and Trade Balance .................................................................................................................. 149
Table 61 Western Europe Polycarbonate Capacity, 2018 ............................................................................................................................. 152
Table 62 Western Europe Supply, Demand, and Trade Balance .................................................................................................................. 153
Table 63 Asia Pacific Polycarbonate Capacity, 2018 ........................................................................................................................................... 156
Table 64 Asia Pacific Supply, Demand, and Trade Balance ....................................................................................................................... 157
Table 65 Cost of Production Estimate for: Synthesis Gas Process: Steam Methane Reforming, USGC Basis .......................................................... 159
Table 66 Cost of Production Estimate for: Synthesis Gas Process: Steam Methane Reforming, Western Europe Basis ........................................ 160
Table 67 Cost of Production Estimate for: Synthesis Gas Process: Steam Methane Reforming, China Basis ......................................................... 161
Table 68 Cost of Production Estimate for: Synthesis Gas Process: Steam Methane Reforming, South Korea Basis .................................................. 162
Table 69 Cost of Production Estimate for: Carbon Monoxide Process: Cryogenic Separation of Syngas, USGC Basis .................................................. 163
Table 70 Cost of Production Estimate for: Carbon Monoxide Process: Cryogenic Separation of Syngas, Western Europe Basis ......................... 164
Table 71 Cost of Production Estimate for: Carbon Monoxide Process: Cryogenic Separation of Syngas, China Basis ........................................... 165
Table 72 Cost of Production Estimate for: Carbon Monoxide Process: Cryogenic Separation of Syngas, South Korea Basis ................................. 166
Table 73 Cost of Production Estimate for: Phosgene Process: Phosgene Production, USGC Basis ................................................................. 167
Table 74 Cost of Production Estimate for: Phosgene Process: Phosgene Production, Western Europe Basis ......................................................... 168
Table 53  Cost of Production Estimate for: Phosgene
Process: Phosgene Production, China Basis ........................................... 169
Table 54  Cost of Production Estimate for: Phosgene
Process: Phosgene Production, South Korea Basis .................................. 170
Table 55  Cost of Production Estimate for: Bisphenol A
Process: Ion Exchange Catalyst, USGC Basis ........................................... 171
Table 56  Cost of Production Estimate for: Bisphenol A
Process: Ion Exchange Catalyst, Western Europe Basis ........................... 172
Table 57  Cost of Production Estimate for: Bisphenol A
Process: Ion Exchange Catalyst, China Basis ........................................... 173
Table 58  Cost of Production Estimate for: Bisphenol A
Process: Ion Exchange Catalyst, South Korea Basis ................................. 174
Table 59  Cost of Production Estimate for: Dimethyl Carbonate
Process: Oxidative Carbonylation, USGC Basis ........................................ 175
Table 60  Cost of Production Estimate for: Dimethyl Carbonate
Process: Oxidative Carbonylation, Western Europe Basis .......................... 176
Table 61  Cost of Production Estimate for: Dimethyl Carbonate
Process: Oxidative Carbonylation, China Basis ........................................ 177
Table 62  Cost of Production Estimate for: Dimethyl Carbonate
Process: Oxidative Carbonylation, South Korea Basis ................................ 178
Table 63  Cost of Production Estimate for: Diphenyl Carbonate
Process: transesterification of Dimethyl Carbonate (via Oxidative Carbonylation), USGC Basis ................................................................. 179
Table 64  Cost of Production Estimate for: Diphenyl Carbonate
Process: transesterification of Dimethyl Carbonate (via Oxidative Carbonylation), Western Europe Basis ......................................................... 180
Table 65  Cost of Production Estimate for: Diphenyl Carbonate
Process: transesterification of Dimethyl Carbonate (via Oxidative Carbonylation), China Basis ................................................................. 181
Table 66  Cost of Production Estimate for: Diphenyl Carbonate
Process: transesterification of Dimethyl Carbonate (via Oxidative Carbonylation), South Korea Basis ........................................................ .... 182
Table 67  Cost of Production Estimate for: Ethylene Carbonate
Process: Via Ethylene Oxide and Carbon Dioxide, USGC Basis .................... 183
Table 68  Cost of Production Estimate for: Ethylene Carbonate
Process: Via Ethylene Oxide and Carbon Dioxide, Western Europe Basis ........ 184
Table 69  Cost of Production Estimate for: Ethylene Carbonate
Process: Via Ethylene Oxide and Carbon Dioxide, China Basis ...................... 185
Table 70  Cost of Production Estimate for: Ethylene Carbonate
Process: Via Ethylene Oxide and Carbon Dioxide, South Korea Basis .............. 186
Table 71  Cost of Production Estimate for: Dimethyl Carbonate
Process: Ethylene Carbonate Transesterification, USGC Basis ....................... 187
Table 72  Cost of Production Estimate for: Dimethyl Carbonate
Process: Ethylene Carbonate Transesterification, Western Europe Basis .......... 188
Table 73  Cost of Production Estimate for: Dimethyl Carbonate
Process: Ethylene Carbonate Transesterification, China Basis ....................... 189
Table 74  Cost of Production Estimate for: Dimethyl Carbonate
Process: Ethylene Carbonate Transesterification, South Korea Basis ............... 190
Table 75  Cost of Production Estimate for: Diphenyl Carbonate
Process: Transesterification of Dimethyl Carbonate (via Ethylene Carbonate),
USGC Basis .............................................................................................................. 191
Table 76  Cost of Production Estimate for: Diphenyl Carbonate
Process: Transesterification of Dimethyl Carbonate (via Ethylene Carbonate),
Western Europe Basis ............................................................................................... 192
Table 77  Cost of Production Estimate for: Diphenyl Carbonate
Process: Transesterification of Dimethyl Carbonate (via Ethylene Carbonate), China
Basis ............................................................................................................................ 193
Table 78  Cost of Production Estimate for: Diphenyl Carbonate
Process: Transesterification of Dimethyl Carbonate (via Ethylene Carbonate), South
Korea Basis .................................................................................................................. 194
Table 79  Cost of Production Estimate for: Diphenyl Carbonate
Process: Phosgenation of Phenol, USGC Basis .......................................................... 195
Table 80  Cost of Production Estimate for: Diphenyl Carbonate
Process: Phosgenation of Phenol, Western Europe Basis .......................................... 196
Table 81  Cost of Production Estimate for: Diphenyl Carbonate
Process: Phosgenation of Phenol, China Basis ............................................................ 197
Table 82  Cost of Production Estimate for: Diphenyl Carbonate
Process: Phosgenation of Phenol, South Korea Basis ............................................... 198
Table 83  Cost of Production Estimate for Isosorbide
Process: Dehydration, USGC Basis ............................................................................ 199
Table 84  Cost of Production Estimate for Isosorbide
Process: Dehydration, Western Europe Basis ............................................................. 200
Table 85  Cost of Production Estimate for Isosorbide
Process: Dehydration, China Basis ............................................................................. 201
Table 86  Cost of Production Estimate for Isosorbide
Process: Dehydration, South Korea Basis ................................................................. 202
The Nexant Subscriptions' Technoeconomics - Energy & Chemicals (TECH) program is recognized globally as the industry standard source for information relevant to the chemical process and refining industries. Technoeconomics - Energy & Chemicals (TECH) reports are available as a subscription program or on a single report basis.

Contact Details:

**Americas:**
Marcos Nogueira Cesar, Vice President, Global Products, E&CA: Nexant Subscriptions
Phone: + 1-914-609-0324, e-mail: mcesar@nexant.com

Erica Hill, Client Services Coordinator, E&CA-Products
Phone: + 1-914-609-0386, e-mail: ehill@nexant.com

**EMEA:**
Anna Ibbotson, Director, Nexant Subscriptions
Phone: +44-207-950-1528, aibbotson@nexant.com

**Asia:**
Chommanad Thammanayakatip, Managing Consultant, Energy & Chemicals Advisory
Phone: +66-2793-4606, email: chommanadt@nexant.com

Nexant, Inc. (www.nexant.com) is a leading management consultancy to the global energy, chemical, and related industries. For over 38 years, Nexant has helped clients increase business value through assistance in all aspects of business strategy, including business intelligence, project feasibility and implementation, operational improvement, portfolio planning, and growth through M&A activities. Nexant has its main offices in San Francisco (California), White Plains (New York), and London (UK), and satellite offices worldwide.

Copyright © by Nexant Inc. 2018. All Rights Reserved.