TECHNOLOGY & COSTS

Biorenewable Insights

Hydrogen

Table of Contents

A Report by Nexant, Inc.
Published Date: April 2020
www.nexantsubscriptions.com

Contents

1 Executive Summary ... 1
 1.1 Overview .. 1
 1.2 Introduction ... 2
 1.3 Technology .. 3
 1.4 Economics ... 4
 1.5 Implications for the Conventional Technology ... 4

2 Introduction .. 6
 2.1 Overview ... 6
 2.1.1 End Uses .. 6
 2.1.2 Supply Sources ... 10

3 Technology .. 12
 3.1 Overview .. 12
 3.1.1 Chlor-alkali ... 12
 3.2 Conventional Routes to Hydrogen and Potential for Biobased Substitution 14
 3.2.1 Reforming ... 14
 3.2.2 Gasification ... 24
 3.2.3 Conventional Electrolysis ... 32
 3.3 Developing Processes ... 35
 3.3.1 Electrolytic Processes ... 35
 3.3.2 Photocatalytic Water Splitting and Artificial Photosynthesis 37
 3.3.3 Thermocatalytic Processes ... 50
 3.3.4 Mechano-catalytic Water Splitting ... 56
 3.3.5 Biological Processes ... 58
 3.3.6 Other Developments ... 64
 3.4 Conclusions ... 64

4 Economics .. 65
 4.1 Economic Analysis Methodology .. 65
 4.1.1 Sources .. 65
 4.1.2 Costing Basis .. 65
4.1.3 Capital Cost Elements
4.1.4 Operating Cost Elements
4.1.5 Market Prices
4.2 Cost of Production (COP) Estimates
 4.2.1 Biogas Reforming
 4.2.2 Biomass Gasification
 4.2.3 Electrolysis
4.3 Comparative Economics
 4.3.1 Process Competitiveness within a Region
 4.3.2 Regional Competitiveness of Each Process
5 Capacity Additions
 5.1 Overview
 5.2 Announced Projects
 5.2.1 Biogas Projects
 5.2.2 Electrolysis Projects
6 Implications
 6.1 Scale and Market Penetration
 6.2 Market Pull and End Uses
 6.2.1 Global Hydrogen Demand
 6.2.2 Global Hydrogen Supply
 6.2.3 Current Hydrogen Station Infrastructure Status
 6.3 Logistics Requirements
 6.3.1 Liquefaction Plants
 6.3.2 Liquid and Gas Terminals
 6.3.3 Hydrogen Delivery Pathways to Refueling Station
 6.3.4 New Developments in Hydrogen Infrastructure
 6.4 Policy Support
 6.4.1 Norway
 6.4.2 China
 6.4.3 Japan
 6.4.4 United States
 6.5 Prices and Margins
 6.5.1 Cost of Production at Current Project Scale
7 Strategic Implications

Appendices
A References
Figures
Figure 1 Major End Uses for Hydrogen ... 2
Figure 2 Commercial and Developmental Routes to Renewable Hydrogen 3
Figure 3 United States Cost of Production Comparison 3
Figure 4 Comparison of Hydrogen Production Technologies at Current Project Scales with 25 Percent Operating Rate ... 5
Figure 5 Hydrogen Consumption for Hydrotreating of Various Refinery Products 7
Figure 6 Major End Uses for Hydrogen ... 8
Figure 7 Sources of Hydrogen ... 10
Figure 8 Anatomy of a Simple Refinery ... 11
Figure 9 Commercial and Developmental Routes to Renewable Hydrogen 12
Figure 10 Electricity Generation Matrix in the United States 13
Figure 11 Relative Carbon Intensities of Power in Different Regions in the United States 13
Figure 12 Steam-Methane Reforming ... 15
Figure 13 Block Flow Diagram of Hydrogen via Steam Methane Reforming 22
Figure 14 Hydrogen Yield versus Oxygen Content of Various Feedstocks 23
Figure 15 Generic Gasification Process Train ... 25
Figure 16 Schematic Diagram of an Updraft Reactor .. 27
Figure 17 Schematic Diagram of a Downdraft Reactor .. 28
Figure 18 Schematic Diagram of BFB Reactor .. 29
Figure 19 Schematic Diagram of CFB Reactor .. 30
Figure 20 Flow Diagram of MSW Processing Using Plasma Gasification 30
Figure 21 Diagram of Hydrogen Production via Electrolysis 32
Figure 22 Process Flow Diagram of Hydrogen Production via Electrolysis 33
Figure 23 Electrolytic Water Splitting with LNBL’s Mo-oxo Metal Complex 36
Figure 24 PEC Hydrogen Production of TiO2/Pt/SiNW Photocathode 39
Figure 25 Photosynthesis of Sunlight in Cyanobacteria ... 41
Figure 26 Ruthenium-based Water Oxidation Catalyst Developed by Jülich Institute 42
Figure 27 Proposed Photoelectrolysis Mechanism within a Nafion Membrane 46
Figure 28 Nafion-Coated Electrode ... 46
Figure 29 ASU Photoelectrochemical Cell for Water Splitting 48
Figure 30 Mechanism of the AIST Photocatalyst-electrolysis Hybrid System 50
Figure 31 The Generation-2 CR5 Solar Thermochemical Reactor 51
Figure 32 Solar Rotary Reactor Configuration Lined with ZnO Particles 52
Figure 33 Solar Thermochemical Reactor Configuration with Cerium-oxide Particles 53
Figure 34 FSEC Hybrid S-NH3 Photothermochemical Water-Splitting Cycle 55
Figure 35 H2 and O2 Produced by Deformation of ZnO Fibers or BaTiO3 Dendrites in Water ... 58
Figure 36 ORNL Integrated Pyrolysis-Microbial Electrolysis 61
Figure 37 Virent’s BioForming Process .. 63
Figure 38 Biomass Gasification-derived Hydrogen Production 83
Figure 39 United States Cost of Production Comparison ... 95
Figure 40 China Cost of Production Comparison ... 96
Figure 41 Brazil Cost of Production Comparison ... 96
Figure 42 Western Europe Cost of Production Comparison .. 97
Figure 43 Biogas Reforming – Cost of Production Comparison at Small Scale 98
Figure 44 Biogas Reforming – Cost of Production Comparison at Large Scale 98
Figure 45 Biomass Gasification – Cost of Production Comparison ... 99
Figure 46 Electrolysis – Cost of Production Comparison .. 100
Figure 47 Global Hydrogen Consumption by Region ... 106
Figure 48 U.S. Hydrogen Demand by Application ... 107
Figure 49 Global Hydrogen Demand by Application, 1975-2019 .. 107
Figure 50 Sources of Hydrogen .. 109
Figure 51 Simplified Flow Diagram for Hydrogen Liquefaction Plant 114
Figure 52 Liquid Terminal for Use with Liquid Delivery ... 115
Figure 53 Liquid Terminal for Use with Gas Delivery ... 115
Figure 54 Hydrogen Delivery Costs ... 116
Figure 55 Liquid Hydrogen Distribution Scenario – Pathway 1 .. 117
Figure 56 Liquid Hydrogen Distribution Scenario – Pathway 2 .. 118
Figure 57 Liquid Hydrogen Distribution Scenario – Pathway 3 .. 118
Figure 58 Compressed Hydrogen Distribution Scenario – Pathway 4 119
Figure 59 Compressed Hydrogen Distribution Scenario – Pathway 5 119
Figure 60 Compressed Hydrogen Distribution Scenario – Pathway 6 120
Figure 61 Compressed Hydrogen Distribution Scenario – Pathway 7 120
Figure 62 Transmission and Distribution Pipeline Arrangement .. 121
Figure 63 Pipeline Hydrogen Distribution Scenario – Pathway 8 .. 121
Figure 64 Pipeline Hydrogen Distribution Scenario – Pathway 9 .. 122
Figure 65 Pipeline Hydrogen Distribution Scenario – Pathway 9 .. 122
Figure 66 Comparison of Hydrogen Production Technologies at Current Project Scales 132
Figure 67 Comparison of Hydrogen Production Technologies at Current Project Scales with 25 Percent Operating Rate ... 132
Tables

Table 1 Margins and Returns of Hydrogen Processes at Industrial Scale in all Regions 4
Table 2 Comparison of Hydrogen with Other Renewable Fuel Options .. 9
Table 3 Major Syngas Production Technology Holders and Licensor .. 21
Table 4 Typical Metrics of Various Gasifier Types .. 26
Table 5 Hydrogen Yield per Catalyst, Feedstock, and Gasification Reactor Type 31
Table 6 Currently Available Industrial Electrolyzer Hydrogen Generators .. 34
Table 7 Market Prices of Hydrogen ... 72
Table 8 Cost of Production Estimate for: Hydrogen by Biogas Reforming, Small Scale 75
Table 9 Cost of Production Estimate for: Hydrogen by Biogas Reforming, World Scale 76
Table 10 Cost of Production Estimate for: Hydrogen by Biogas Reforming, Small Scale 77
Table 11 Cost of Production Estimate for: Hydrogen by Biogas Reforming, World Scale 78
Table 12 Cost of Production Estimate for: Hydrogen by Biogas Reforming, Small Scale 79
Table 13 Cost of Production Estimate for: Hydrogen by Biogas Reforming, World Scale 80
Table 14 Cost of Production Estimate for: Hydrogen by Biogas Reforming, Small Scale 81
Table 15 Cost of Production Estimate for: Hydrogen by Biogas Reforming, World Scale 82
Table 16 Feedstock Properties and Value ... 84
Table 17 Cold Gas Efficiencies and Product Yield .. 85
Table 18 Cost of Production Estimate for: Hydrogen by Biomass Gasification of Corn Stover 86
Table 19 Cost of Production Estimate for: Hydrogen by Biomass Gasification of Corn Stover 87
Table 20 Cost of Production Estimate for: Hydrogen by Biomass Gasification of Sugarcane Trash 88
Table 21 Cost of Production Estimate for: Hydrogen by Biomass Gasification of Wheat Straw 89
Table 22 Cost of Production Estimate for: Hydrogen by Electrolysis ... 91
Table 23 Cost of Production Estimate for: Hydrogen by Electrolysis .. 92
Table 24 Cost of Production Estimate for: Hydrogen by Electrolysis ... 93
Table 25 Cost of Production Estimate for: Hydrogen by Electrolysis ... 94
Table 26 Global Renewable Hydrogen Biogas Projects Announced Capacity Listing 101
Table 27 Global Renewable Hydrogen Electrolysis Projects Announced Capacity Listing 101
Table 28 Explicit Hydrogen Support Policies by Country ... 125
Table 29 Emission-thresholds for Light Duty Vehicles .. 126
Table 30 Alternative Fuel Requirements for Heavy Duty Vehicles ... 127
Table 31 Minimum Clean Vehicle Procurement Target per Member States and per Vehicle Segment ... 127
Table 32 Margins and Returns of Hydrogen Processes at Industrial Scale in all Regions 131
Table 33 LCFS Credits for Renewable Hydrogen Pathways .. 131
The Nexant Subscriptions' Biorenewable Insights program is recognized globally as the industry standard source for information relevant to the chemical process and refining industries. Biorenewable Insights reports are available as a subscription program or on a single report basis.

Contact Details:

Americas:
Marcos Nogueira Cesar, Vice President, Global Products, E&CA: Nexant Subscriptions
Phone: + 1-914-609-0324, e-mail: mcesar@nexant.com

Erica Hill, Client Services Coordinator, E&CA-Products
Phone: + 1-914-609-0386, e-mail: ehill@nexant.com

EMEA:
Anna Ibbotson, Director, Nexant Subscriptions
Phone: +44-207-950-1528, aibbotson@nexant.com

Asia:
Chommanad Thammanayakatip, Managing Consultant, Energy & Chemicals Advisory
Phone: +66-2793-4606, email: chommanadt@nexant.com

Nexant, Inc. (www.nexant.com) is a leading management consultancy to the global energy, chemical, and related industries. For over 38 years, Nexant has helped clients increase business value through assistance in all aspects of business strategy, including business intelligence, project feasibility and implementation, operational improvement, portfolio planning, and growth through M&A activities. Nexant has its main offices in San Francisco (California), White Plains (New York), and London (UK), and satellite offices worldwide.

Copyright © by Nexant Inc. 2020. All Rights Reserved.