TECHNOLOGY & COSTS

Technoeconomics - Energy & Chemicals (TECH)

TECH 2020S7 Polyether Polyols

Table of Contents

A Report by NexantECA Americas, LLC.
Published Date: August 2020

www.nexanteca.com/subscriptions-and-reports

Contents

1 Executive Summary .. 1

1.1 Technology Overview .. 3

1.1.1 Technology-based on Conventional Routes ... 3

1.1.2 Technology-based on Renewable Sources .. 5

1.2 Business Strategy Overview ... 7

1.3 Process Economics Overview .. 8

1.3.1 Product Analysis ... 8

1.3.2 Regional Analysis ... 10

1.3.3 Sensitivity Analysis .. 11

1.4 Market Overview ... 13

1.4.1 Demand ... 13

1.4.2 Supply ... 14

1.4.3 Supply, Demand, and Trade .. 16

2 Introduction .. 18

2.1 Value Chain Overview .. 18

2.2 Properties ... 19

2.2.1 Physical Properties .. 22

2.3 Polyurethane Overview .. 24

2.4 Bio Polyols ... 26

2.5 Industry Structure .. 27

2.6 Technology Holders/Licensors ... 28

2.7 Strategic Business Considerations .. 29

3 Technologies Based on Conventional Routes ... 31

3.1 Difunctional Polyols – Polypropylene Glycols .. 31

3.1.1 Process Chemistry .. 31

3.1.2 Process Description .. 33

3.2 Higher-Functional Polyols ... 36

3.2.1 Trifunctional Polyols ... 37

3.2.2 Polyols with Functionality Greater than Three ... 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>Polyols Containing Nitrogen or Phosphorous</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Commercial Processes</td>
<td>44</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Buss ChemTech Process</td>
<td>45</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Covestro (Bayer MaterialScience) IMPACT™ Process</td>
<td>48</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Thyssenkrupp</td>
<td>51</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Scientific Design</td>
<td>53</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Dow DuPont</td>
<td>56</td>
</tr>
<tr>
<td>3.3.6</td>
<td>BASF</td>
<td>57</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Huntsman</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Catalyst Development Trends</td>
<td>60</td>
</tr>
<tr>
<td>3.4.1</td>
<td>DMC Catalyst</td>
<td>60</td>
</tr>
<tr>
<td>3.4.2</td>
<td>DMC Catalyst Production</td>
<td>60</td>
</tr>
<tr>
<td>3.4.3</td>
<td>DMC Polyol Properties</td>
<td>62</td>
</tr>
<tr>
<td>3.4.4</td>
<td>DMC Catalyst Production</td>
<td>63</td>
</tr>
<tr>
<td>3.4.5</td>
<td>China’s DMC Catalyst Development</td>
<td>65</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Alternative Catalysts or Technology</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Technologies Based on Renewable Sources</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Covestro</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Aramco</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>BASF</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Metzeler Schaum</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>PolyLabs</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Lubrizol Corporation</td>
<td>72</td>
</tr>
<tr>
<td>4.7</td>
<td>Stepan Company</td>
<td>73</td>
</tr>
<tr>
<td>4.8</td>
<td>Emery Oleochemicals</td>
<td>73</td>
</tr>
<tr>
<td>4.9</td>
<td>Dow DuPont</td>
<td>76</td>
</tr>
<tr>
<td>4.10</td>
<td>Cargill</td>
<td>77</td>
</tr>
<tr>
<td>4.11</td>
<td>Huntsman Corporation</td>
<td>78</td>
</tr>
<tr>
<td>4.12</td>
<td>Vertellus Performance Materials</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>Process Economics</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Costing Basis</td>
<td>80</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Investment Basis</td>
<td>80</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Pricing Basis</td>
<td>80</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Cost of Production Basis</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Production Cost Estimates</td>
<td>82</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Product Analysis</td>
<td>82</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Regional Analysis</td>
<td>95</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Sensitivity Analysis</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>Commercial Applications</td>
<td>112</td>
</tr>
<tr>
<td>7</td>
<td>Regional Market Analysis</td>
<td>116</td>
</tr>
<tr>
<td>7.1</td>
<td>Global</td>
<td>116</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Demand</td>
<td>116</td>
</tr>
</tbody>
</table>
7.1.2 Supply ... 118
7.1.3 Supply, Demand, and Trade 119
7.2 North America ... 121
 7.2.1 Demand .. 121
 7.2.2 Supply ... 122
 7.2.3 Supply, Demand, and Trade 123
7.3 Western Europe ... 125
 7.3.1 Demand .. 125
 7.3.2 Supply ... 125
 7.3.3 Supply, Demand, and Trade 126
7.4 Asia Pacific (Excluding China) 128
 7.4.1 Demand .. 128
 7.4.2 Supply ... 128
 7.4.3 Supply, Demand, and Trade 131
7.5 China ... 132
 7.5.1 Demand .. 132
 7.5.2 Supply ... 133
 7.5.3 Supply, Demand, and Trade 135
7.6 Rest of the World ... 137
 7.6.1 Demand .. 137
 7.6.2 Supply ... 137
 7.6.3 Supply, Demand, and Trade 138
8 Glossary .. 140

Appendices
A Definitions of Capital Cost Terms Used in Process Economics ... 143
B Definitions of Operating Cost Terms Used in Process Economics .. 148
C TECH Program Title Index (2010-2020) ... 151
D References ... 154
Figures

Figure 1 Polyurethane Value Chain ... 2
Figure 2 Global Polyether Polyol Demand by Application 3
Figure 3 Summary of Economics for Production of Different Polyols 9
Figure 4 Summary of Economics for Production of Glycerin-Based Polyols in D... 10
Figure 5 Summary of Economics for Production of Higher Functional Polyols in D... 11
Figure 6 Sensitivity of Polyether Polyol Production Costs to Feedstock Prices in USG... 12
Figure 7 Sensitivity of Polyether Polyol Production Cost to Starter Price 12
Figure 8 Global Polyether Demand by Region .. 14
Figure 9 Global Polyether Polyol Capacity by Region 15
Figure 10 Capacity by Producer, 2020 ... 16
Figure 11 Global Polyether Polyol Supply, Demand, and Trade 16
Figure 12 Properties and Uses of Polyether Polyols ... 19
Figure 13 Viscosity versus Temperature ... 22
Figure 14 Viscosity versus Hydroxyl Groups ... 23
Figure 15 Polyurethane Value Chain ... 24
Figure 16 Global Polyether Polyol Capacity by Region 27
Figure 17 Capacity by Producer, 2020 ... 28
Figure 18 Polyol Production via Batch Processing ... 34
Figure 19 Acrylonitrile Graft Polyols Flowsheet .. 44
Figure 20 Schematic of Buss ChemTech Alkoxylation Reactor 46
Figure 21 Simplified Process Flow Diagram of Buss ChemTech Alkoxylation Process... 47
Figure 22 Simplified Process Flow Diagram of Covestro IMPACT™ Continuous Process or Polyol Production ... 50
Figure 23 Thyssenkrupp Polyol Process Layout and Process Flow Diagram 52
Figure 24 Plant Configuration for Sydol® Polyol Products 55
Figure 25 Rate Profile of Select DMC Catalysts and Complexing Agents 62
Figure 26 DMC Catalyst Production Flow Diagram .. 64
Figure 27 Triglycerides Reactions .. 68
Figure 28 BASF Sovermol Molecule Properties .. 71
Figure 29 Emery Oleochemicals EMEROX Ozonolysis Process 74
Figure 30 Emery Oleochemicals INFIGREEN Process 75
Figure 31 Azelaic Acid Production via Ozonolysis Dimer Diacid Production via Addition... 75
Figure 32 Summary of Economics for Production of Different Polyols 94
Figure 33 Summary of Economics for Production of Glycerin-Based Polyols in Different Regions 109
Figure 34 Summary of Economics for Production of Higher Functional Polyols in Different Regions 109
Figure 35 Sensitivity of Polyether Polyol Production Costs to PO Feedstock Prices in USG... 110
Figure 36 Sensitivity of Polyether Polyol Production Cost to Starter Price 111
Figure 37 Global Polyether Polyols Consumption by End Use, 2019 112
Figure 38 Global Polyether Demand by Region (2020 Percent Estimate) 117
Figure 39 Global Polyether Polyol Capacity by Region (2014 to 2024 period) 118
Figure 40 Capacity by Producer, 2020 ... 119
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Global Polyether Polyol Supply, Demand, and Trade</td>
<td>119</td>
</tr>
<tr>
<td>42</td>
<td>North America Polyether Polyol Supply, Demand, and Trade</td>
<td>124</td>
</tr>
<tr>
<td>43</td>
<td>West European Polyether Polyol Supply, Demand, and Trade</td>
<td>127</td>
</tr>
<tr>
<td>44</td>
<td>Asia Pacific (excl. China) Polyether Polyol Supply, Demand, and Trade</td>
<td>131</td>
</tr>
<tr>
<td>45</td>
<td>China Polyether Polyol Supply, Demand, and Trade</td>
<td>136</td>
</tr>
<tr>
<td>45</td>
<td>Rest of the World Polyether Polyol Supply, Demand, and Trade</td>
<td>139</td>
</tr>
</tbody>
</table>
Tables
Table 1 Properties and Uses of Polyether Polys ... 1
Table 2 Summary of Key Market Considerations .. 8
Table 3 Global Polyether Polyol Demand by Region .. 14
Table 4 Global Polyether Polyol Supply, Demand, and Trade .. 17
Table 5 Properties and Uses of Polyether Polys ... 21
Table 6 Typical Input Requirements for Selected Polyurethanes .. 21
Table 7 Thermoplastic Polyurethane Physical Properties ... 26
Table 8 Polyether Polys Technology Licensors ... 29
Table 9 Summary of Key Market Considerations .. 30
Table 10 Typical Specifications for a 2 000 MW Poly(oxypropylene) Glycol 35
Table 11 Properties of Common Starters for Polyurethane Polys 36
Table 12 Typical Properties of Glycerin-PO adduct with MW of 2 900 to 3 300 38
Table 13 Typical Properties of 3 000 MW TMP-PO Adduct .. 39
Table 14 TPU Property Advantages and Applications by Polyol ... 56
Table 15 Typical Physical and Chemical Properties of Conventional and Acclaim™ DMC Polys ... 63
Table 16 Major Bio-based Polyol Producers ... 67
Table 17 Key Prices Used in Cost of Production Tables (First Quarter of 2020 Basis) 81
Table 18 Cost of Production Estimate for: Trifunctional Polyether (3 000 MW)
Process: Alkoxylation of Glycerin Starter with 100 Percent PO .. 84
Table 19 Cost of Production Estimate for: Trifunctional Polyether Polyol (5 000 MW)
Process: Alkoxylation of Glycerin Starter with 95 Percent PO and 5 Percent EO 85
Table 20 Cost of Production Estimate for: Trifunctional Polyether Polyol (5 000 MW) with EO
End Cap
Process: Alkoxylation of Glycerin Starter with 80 Percent PO and 20 Percent EO 86
Table 21 Cost of Production Estimate for: Polyester Polyol
Process: Alkoxylation of Trimethylolpropane Starter with 100 Percent PO 87
Table 22 Cost of Production Estimate for: Higher Functionality Polyether Polyol
Process: Alkoxylation of Phosphoric Acid Starter with 100 Percent PO 88
Table 23 Cost of Production Estimate for: Higher-Functionality Polyether Polyol (732 MW)
Process: Alkoxylation of Sorbitol Starter with 100 Percent PO .. 89
Table 24 Cost of Production Estimate for: Higher-Functionality Polyether Polyol (976 MW)
Process: Alkoxylation of Sucrose Starter with 100 Percent PO 90
Table 25 Cost of Production Estimate for: Polyester Polyol
Process: Alkoxylation of Toluenediamine Starter with 100 Percent PO 91
Table 26 Cost of Production Estimate for: Polyester Polyol
Process: Alkoxylation of Soybean Oil with 100 Percent PO .. 92
Table 27 Cost of Production Estimate for: Polyester Polyol
Process: Ring-opening of Epoxidized Soybean Oil with Hydrogen Peroxide and
Acetic Acid ... 93
Table 28 Summary of Economics for Production of Different Polyls 94
Table 29 Cost of Production Estimate for: Trifunctional Polyether Polyol (3 000 MW)
Process: Alkoxylation of Glycerin Starter with 100 Percent PO, China 96
Table 30 Cost of Production Estimate for: Trifunctional Polyether Polyol (3 000 MW)
Process: Alkoxylation of Glycerin Starter with 100 Percent PO, Western Europe 97
Table 31 Cost of Production Estimate for: Trifunctional Polyether Polyol (5 000 MW) Process: Alkoxylation of Glycerin Starter with 95 Percent PO and 5 Percent EO, China.................................98
Table 32 Cost of Production Estimate for: Trifunctional Polyether Polyol (5 000 MW) Process: Alkoxylation of Glycerin Starter with 95 Percent PO and 5 Percent EO, Western Europe..99
Table 33 Cost of Production Estimate for: Trifunctional Polyether Polyol (5 000 MW) with EO End Cap Process: Alkoxylation of Glycerin Starter with 80 Percent PO and 20 Percent EO, China..100
Table 34 Cost of Production Estimate for: Trifunctional Polyether Polyol (5 000 MW) with EO End Cap Process: Alkoxylation of Glycerin Starter with 80 Percent PO and 20 Percent EO, Western Europe..101
Table 35 Cost of Production Estimate for: Higher-Functionality Polyether Polyol (460 PG NP, 732 MW) Process: Alkoxylation of Sorbitol Starter with 100 Percent PO, China.................................102
Table 36 Cost of Production Estimate for: Higher-Functionality Polyether Polyol (460 PG NP, 732 MW) Process: Alkoxylation of Sorbitol Starter with 100 Percent PO, Western Europe.................103
Table 37 Cost of Production Estimate for: Higher-Functionality Polyether Polyol (460 PH NP, 796 MW) Process: Alkoxylation of Sucrose Starter with 100 Percent PO, China.................................104
Table 38 Cost of Production Estimate for: Higher-Functionality Polyether Polyol (460 PH NP, 796 MW) Process: Alkoxylation of Sucrose Starter with 100 Percent PO, Western Europe.........................105
Table 39 Cost of Production Estimate for: Polyether Polyol Process: Ring-opening of Epoxidized Soybean Oil with Propylene Oxide, China.................................106
Table 40 Cost of Production Estimate for: Polyether Polyol Process: Ring-opening of Epoxidized Soybean Oil with Propylene Oxide, Western Europe..107
Table 41 Summary of Economics for Production of Glycerin-Based Polyols in Different Regions...... 108
Table 42 Summary of Economics for Production of Higher Functional Polyols in Different Regions ..108
Table 43 Polyether Polyol Grades and Applications ...115
Table 44 Global Polyether Polyol Demand by Region ...117
Table 45 Global Polyether Polyol Supply, Demand, and Trade..120
Table 46 Polyether Polyol Capacity in North America in 2020..123
Table 47 North America Polyether Polyol Supply, Demand, and Trade ..124
Table 48 Polyether Polyol Capacities in Western Europe in 2020..126
Table 49 West European Polyether Polyol Supply, Demand, and Trade ..127
Table 50 Polyether Polyol Capacities in Asia Pacific in 2020 ..129
Table 51 Asian Pacific (excl. China) Polyether Polyol Supply, Demand, and Trade............................132
Table 52 Polyether Polyol Capacities in China in 2020...134
Table 53 China Polyether Polyol Supply, Demand, and Trade..136
Table 54 Key Polyether Polyol Capacities in Rest of the World in 2020...138
Table 55 Rest of the World Polyether Polyol Supply, Demand, and Trade ..139
TECHNOLOGY & COSTS

Technoeconomics - Energy & Chemicals (TECH)

The NexantECA Subscriptions' Technoeconomics - Energy & Chemicals (TECH) program is recognized globally as the industry standard source for information relevant to the chemical process and refining industries. Technoeconomics - Energy & Chemicals (TECH) reports are available as a subscription program or on a single report basis.

Contact Details:

Americas:
Marcos Nogueira Cesar, Vice President, Global Products, E&CA: NexantECA Subscriptions
Phone: +1-914-609-0324, e-mail: mcesar@nexant.com

Erica Hill, Client Services Coordinator, ECA-Products
Phone: +1-914-609-0386, e-mail: ehill@nexant.com

EMEA:
Anna Ibbotson, Director, NexantECA Subscriptions
Phone: +44-207-950-1528, aibbotson@nexant.com

Asia:
Chommanad Thammanayakatip, Managing Consultant, Energy & Chemicals Advisory
Phone: +66-2793-4606, email: chommanadt@nexant.com

NexantECA Americas, LLC. (www.nexantECA.com) is a leading management consultancy to the global energy, chemical, and related industries. For over 38 years, NexantECA has helped clients increase business value through assistance in all aspects of business strategy, including business intelligence, project feasibility and implementation, operational improvement, portfolio planning, and growth through M&A activities. NexantECA has its main offices in San Francisco (California), White Plains (New York), and London (UK), and satellite offices worldwide.

Copyright © by NexantECA Americas, LLC. 2020. All Rights Reserved.